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Abstract. To design effective marine reserves and support fisheries, more information on fishing
patterns and impacts for targeted species is needed, as well as better understanding of their key habi-
tats. However, fishing impacts vary geographically and are difficult to disentangle from other factors
that influence targeted fish distributions. We developed a set of fishing effort and habitat layers at high
resolution and employed machine learning techniques to create regional-scale seascape models and
predictive maps of biomass and body length of targeted reef fishes for the main Hawaiian Islands. Spa-
tial patterns of fishing effort were shown to be highly variable and seascape models indicated a low
threshold beyond which targeted fish assemblages were severely impacted. Topographic complexity,
exposure, depth, and wave power were identified as key habitat variables that influenced targeted fish
distributions and defined productive habitats for reef fisheries. High targeted reef fish biomass and
body length were found in areas not easily accessed by humans, while model predictions when fishing
effort was set to zero showed these high values to be more widely dispersed among suitable habitats.
By comparing current targeted fish distributions with those predicted when fishing effort was removed,
areas with high recovery potential on each island were revealed, with average biomass recovery of
517% and mean body length increases of 59% on Oahu, the most heavily fished island. Spatial protec-
tion of these areas would aid recovery of nearshore coral reef fisheries.

Key words: coral reefs; essential habitat; fisheries replenishment; fishing effort; Hawaii; LiDAR; marine protected
areas; marine reserve design; predictive modeling; recovery potential; spatial planning; species distribution modeling.

INTRODUCTION

Coastal marine ecosystems are in decline worldwide due to
multiple interacting stressors operating from global to local
scales (Lotze et al. 2006, Norstr€om et al. 2016). Fishing is
one of the most direct of these stressors and removes fish bio-
mass, distorts trophic and size structure, and alters commu-
nity composition resulting in the loss of ecological functions
and ecosystem services (Jackson et al. 2001). These demon-
strated impacts point to a need for better management of fish-
eries worldwide, including the implementation of additional
marine reserves to recover fish biomass and restore key
ecosystem functions (Edgar et al. 2014). Numerous studies
have documented the benefits of spatial protection on
exploited fish assemblages, such as increased biodiversity and
resilience (Mellin et al. 2016), resistance to invasive species
(Giakoumi and Pey 2017), and fisheries enhancement (Weigel
et al. 2014). Increases in biomass and size of targeted fish
species in marine reserves have been particularly well docu-
mented (Lester et al. 2009). Current research includes a focus

on maximizing reserve benefits by incorporating connectivity,
the demographic linking of local populations through disper-
sal of individuals as larvae, juveniles or adults, and habitat
quality as explicit considerations in marine reserve design
(Almany et al. 2009, Green et al. 2015). As larval export from
marine reserves has been shown to replenish stocks in fished
areas (Harrison et al. 2012), reserves that support healthy
spawning populations which act as larval sources may be key
for fisheries recovery. Thus, identifying areas with habitats
that have the potential to support reproductive populations of
targeted fishes is critical to the design of effective place-based
fisheries restoration strategies.
Rarely, however, do studies of coastal marine ecosystems

integrate local context and stressors in estimates of recovery
potential. Specifically, fishing patterns must be considered
to inform effective placement of marine reserves intended to
enhance fisheries. Fishing effects vary geographically and
are difficult to disentangle from other factors that influence
targeted fish distributions, creating a spatially complex chal-
lenge for understanding patterns of fishing impacts on these
assemblages (Taylor et al. 2015, Nash and Graham 2016).
Spatial ecological modeling techniques, where predicted
variable distributions are mapped across geographical space,
have proven useful to examine spatial trends and fill gaps in
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coverage of empirical data sets (Guisan and Zimmermann
2000, Guisan and Thuiller 2005, Elith and Leathwick 2009).
Models can be calibrated using ecological field survey data
to establish relationships between fish species and/or assem-
blage characteristics and remotely sensed habitat and envi-
ronmental variables. These calibrated models, referred to
here as seascape models, can then be used to make spatial
predictions of fish, or fishery indicators, across the area
of interest (Pittman and Knudby 2014). However, these
approaches have yet to incorporate spatially explicit esti-
mates of fishing pressure and are rarely applied to prioritize
areas to inform fisheries replenishment strategies in coastal
marine ecosystems.
Seascape variables such as seafloor topography, benthic

cover, and wave exposure, at varying spatial scales, have been
shown to be important predictors of fish assemblages
(Friedlander et al. 2003, Bouchet et al. 2015, Galaiduk et al.
2017). Impacts from fishing have been inferred by comparing
fish populations in populated vs. remote areas (e.g., Friedlan-
der et al. 2018) and by using proxies such as local human
population density and distance to markets (Williams et al.
2008, Cinner et al. 2013). Fishing effects have also been
investigated through studies of fish populations along gradi-
ents of protection ranging from gear restrictions (Campbell
et al. 2017), to rotational closures (Cohen and Foale 2013),
to marine protected areas (MPAs) including full no-take
marine reserves (Sciberras et al. 2013). Due to increased
availability and coverage of empirical and remotely sensed
data sets, there is opportunity to build on these studies by
using seascape models to better understand fish habitat rela-
tionships in the context of fishing impacts and make realistic
and spatially explicit estimates of recovery potential.

We address these knowledge and capacity gaps by develop-
ing a set of fishing effort map layers at high resolution and
employing machine-learning techniques to create regional-
scale seascape models and predictive maps of targeted reef
fish biomass and body length for the Main Hawaiian Islands
(MHI). We use a large and geographically comprehensive
database of reef fish surveys and of predictor variables that
includes measures of two-dimensional and three-dimensional
spatial patterning of the seafloor and the distribution of wave
energy. Study objectives were to (1) quantify and map fishing
effort and habitat patterns around the MHI, (2) identify and
characterize key habitat variables that promote high targeted
fish biomass and body length, (3) model and quantify the
recovery potential of targeted fish assemblages in the absence
of fishing pressure (in terms of mean biomass and body
length), and (4) identify areas with the highest recovery
potential to prioritize for management actions.

METHODS

Study area

The Hawaiian Islands are located near the center of the
Pacific Ocean and are the most isolated archipelago in the
world. The MHI consist of high volcanic mountain peaks,
with steep topographic relief to the coastline and fringing
reefs accreting on the submerged slopes. There are eight
islands that comprise the MHI, six of which were evaluated
in this study (from north to south): Kaua‘i, Ni‘ihau, O‘ahu,
Moloka‘i, Maui, and Hawai‘i islands (Fig. 1). The islands
of L�ana‘i and Kaho‘olawe were not included due to the lack
of high-resolution bathymetry data.

FIG. 1. Main Hawaiian Islands (MHI) study domain with reef fish survey locations used for modeling.
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Reef fish survey data

A spatially comprehensive data set of reef fish surveys of
the MHI conducted between 2010 and 2016 was contributed
by the Pacific Islands Fisheries Science Center‘s Ecosystem
Science Division (Heenan et al. 2017). Fish surveys utilized
a paired stationary point count (SPC) protocol and were
conducted on hard bottom habitat, stratified by reef zone
and depth (Heenan et al. 2017). A total of 1,184 indepen-
dent survey locations across the MHI were used for model-
ing (Fig. 1). Spatial predictions were generated on a
60 9 60 m resolution grid to account for the dimensions of
the survey method and the positional uncertainty of the
global positioning systems used to navigate to survey locations.
Targeted species of the MHI nearshore fishery were defined

as coral reef fishes having ≥450 kg of annual recreational or
commercial harvest for the past 10 yr (2000–2010), or other-
wise recognized as important for recreational, subsistence, or
cultural fishing (Hawaii Division of Aquatic Resources 2018).
Biomass was estimated using the allometric length–mass con-
version M = aTLb, where parameters a and b are species-spe-
cific fitting parameters, TL is total length (cm), and M is
mass (g). Parameters were obtained from a comprehensive
assessment of Hawaii length–mass fitting parameters (M.
Donovan, unpublished data) and FishBase (Froese and Pauly
2017). Cryptic and soft-bottom species were excluded due to
low sampling effectiveness. Planktivores were excluded due to
patchy distributions and weak benthic-habitat relationships,
as were pelagic species (Appendix S1: Table S1). Targeted
species biomass was calculated as the sum biomass of
modeled species at each survey location. Targeted species
body length was calculated as the average recorded body
length of modeled species at each survey location.

Predictor data

Fishing effort.—We modeled and mapped spatial patterns of
fishing effort based on non-commercial island-scale effort
estimates (McCoy 2015), following the methods of Lecky
(2016) (Wedding et al. 2018). This previous work mapped
spatial patterns of catch, though did not incorporate mea-
sures of human population in the distribution of shore-based
fishing estimates. We did not consider nearshore commercial
fishing because it only represents a small fraction of total esti-
mated effort and data quality is questionable (McCoy 2015).
Furthermore, commercial fishing data are recorded for large
reporting blocks that would obscure fine-scale spatial pat-
terns of fishing effort. Shore and boat fishing were modeled
separately by major gear type (line, net, and spear), which
were assumed to have different spatial footprints. Despite
different magnitudes, patterns of total shore effort hours
between gear types were very similar among islands
(Appendix S1: Fig. S1) and both shore and boat fishing effort
layers were highly correlated among gear types (>0.8 Pearson
r). Because spear fishing had the largest spatial footprint,
highest catch per unit effort, and targets the greatest variety
of species, it was used as a proxy of total effort for both shore
and boat fishing, respectively.
We used average annual fishing effort (hours per year) for

reef fish by island from 10 years of recreational fishery data
(2004–2013) compiled by McCoy (2015) and distributed

these values into the nearshore marine area based on weight-
ing factors related to accessibility to fishers. Fishing effort
showed a declining trend over time for all islands with the
exception of L�ana‘i (McCoy 2015), so estimated values were
conservative. Marine managed areas where fishing is prohib-
ited were set to zero. For shore fishing, proximity and type
of roads along with shoreline steepness were used as proxies
for accessibility, and values were weighted by human popu-
lation within 30 km. To model spear fishing, a logistic decay
function was used so effort decreased with depth to a maxi-
mum distance of 2 km from shore. The parameters of the
function were set based on discussions with fishing experts
in Hawai‘i and assume the vast majority of spearfishing
effort is shallower than 20 m and there is no effort beyond
40 m (Lecky 2016). For boat fishing, accessibility measures
were based on distance to boat launch/harbor weighted by
human population within 30 km. There was no recreational
fishery data available for Ni‘ihau (population 170) and,
while subsistence fishing does occur, shore-fishing effort was
assumed to be zero. To ground-truth the fishing effort maps,
estimated shore-based spear fishing effort values were
compared to total shore fishing effort values from 12 inde-
pendent fishing (creel) survey locations across the MHI. Total
shore fishing effort values were obtained from Delaney et al.
(2017) and compared to derived spear fishing effort maps
based on the sum of grid cell values within polygons repre-
senting each survey area. Empirical boat based fishing effort
estimates were not available for comparison.

Habitat variables.—A set of 62 gridded environmental data
sets at 60 9 60 m resolution was generated for each island as
potential predictor variables used to model reef fish assem-
blage metrics (Stamoulis et al. 2016). Selection of predictors
was based on an extensive literature review and input from
experts in Hawaiian reef ecology (Delevaux 2017). There
were four types of predictor variables: seafloor topography,
benthic habitat composition, geographic, and wave energy.
Seafloor topography variables were included to account

for variation in reef fish distributions due to direct and indi-
rect effects of depth and seafloor structure. A gridded syn-
thesis of multibeam sonar and light detection and ranging
(LiDAR) bathymetry at 5-m resolution was used as the
depth variable and to derive the suite of seafloor topography
metrics. For example, the morphometric Slope of slope (a
second derivative of bathymetry) measures the maximum
rate of change in slope between cells within the specified
analytical neighborhood. Slope of slope is a measure of sur-
face topographic complexity, sometimes called terrain
roughness, and has been shown to be positively correlated
with finer scale in situ measures of rugosity such as chain-
tape measurements (Pittman et al. 2009, Pittman and Brown
2011). The modeled area was limited by gaps in the LiDAR
bathymetry data. For this reason, the islands of L�ana‘i and
Kaho‘olawe were not modeled, as well as much of the near-
shore area around Ni‘ihau, and large portions of the north-
east and southeast coasts of Hawai‘i island.
Benthic habitat composition variables from existing habi-

tat maps (Battista et al. 2007) were included to account for
variation in reef fish assemblages arising from the direct and
indirect effects of the spatial configuration of benthic habi-
tats. Geographic variables were used to account for variation
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in reef fish assemblages arising from spatial location. Wave
energy variables were included to account for variation in
reef fish assemblages arising from the direct and indirect
effects of ocean wave dynamics.
A pairwise correlation analysis was performed on the full set

of predictors for the whole study area (MHI). Highly correlated
predictors (Spearman |q| > 0.7) were identified, and those
highly correlated with two or more other predictors were
removed. In cases where only two predictors were highly corre-
lated, those with greater ecological importance (based on expert
opinion and scientific literature) were retained. After the corre-
lation analysis, 25 out of 62 seascape predictors were retained
for model development (Table 1; Appendix S1: Table S2).

Seascape models

Boosted regression trees (BRT) were used to estimate rela-
tionships between targeted fish assemblage metrics (biomass
and length) and the predictor data sets (De‘ath 2007, Elith
et al. 2008). These modeled relationships were then used to
create spatial predictions of targeted fish biomass and body
length. Each metric was modeled independently at the archipe-
lago scale. To make predictions with fishing pressure removed,
fishing predictors were set to zero. Statistical models and spa-
tial predictions were generated in R (RCore Team 2014) using
the dismo (Hijmans et al. 2014) and raster (Hijmans 2014)
packages. BRT is effective at modeling nonlinearities, disconti-
nuities (threshold effects), and interactions between variables
(Breiman 1996, 2001, De‘ath and Fabricius 2000).
BRT can accommodate many types of response variables.

Since the targeted fish assemblage metrics were continuous
variables, they were modeled using a Gaussian (normal) dis-
tribution, and appropriate data transformations were applied
to improve normality. Targeted fish biomass was fourth-root
transformed and targeted fish body length was square-root
transformed. Prior to model fitting, reef fish survey data were
randomly divided into model training (70%) and test (30%)
subsets. The test data set was withheld from model fitting
and used only to evaluate predictive performance (map accu-
racy). Although boosting makes BRT models less prone to
overfitting (Friedman 2002, Elith et al. 2008), predictive per-
formance was evaluated using the test data to measure how
well the model generalized to new data.

Model fitting and selection was accomplished following the
procedures detailed in Elith et al. (2008). To increase parsi-
mony, selected models were then simplified to remove less
informative predictor variables. This was accomplished by
dropping the least contributing predictor, re-fitting the model,
and computing the change in predictive deviance relative to
the initial model (Elith et al. 2008). The predictive deviance
indicates the amount of variation in the response variable not
explained by the model. This process was repeated and the
predictive deviance was plotted over the full range of predic-
tors. The final number of predictors was selected at the inflec-
tion point in the predictive deviance curve, where change in
predictive deviance increased relative to previous values. In
general, this resulted in the removal of predictors that
explained <5% of the variation in the response variable.
Bootstrapping was used to create spatially explicit predic-

tions and calculate prediction precision. The model training
data set was repeatedly sampled with replacement to create
20 bootstrap samples. Using the optimal parameter value
combination and simplified set of predictor variables, a BRT
model was fit to each bootstrap sample and used to make
predictions to a spatially explicit gridded map using the val-
ues of the predictor variables at each grid cell. This resulted
in a total of 20 spatial prediction grids that were used to cal-
culate the mean and coefficient of variation (CV) in each
grid cell (Leathwick et al. 2006), where low CV values indi-
cate high precision. Prediction means and CVs were plotted
against each other to visualize the relationship between the
magnitude and precision of predictions. The mean of the
bootstrapped predictions was used for interpretation and
further analysis.
Model performance was evaluated using the cross-valida-

tion percent deviance explained (PDE) and test PDE. The
cross-validation PDE is the 10-fold cross-validation estimate
of the percent deviance explained for the best model (as
described above). Similarly, the test PDE was determined by
calculating the percent deviance explained by the model
when evaluated using the model test data set. Both metrics
indicate overall model fit, but the test PDE also provides a
measure of model performance when predicting data that
were independent of model fitting. To better understand the
relationship between measured and predicted values, average
measured values by island were compared with predicted

TABLE 1. Final predictor data sets used in model development.

Predictor data set types Data sets Description

Fishing (2) boat-fishing spear, shore-fishing spear boat and shore based fishing effort represented
by spearing effort

Seafloor topography (12) depth, slope, slope of slope, aspect, planar and
profile curvature, bathymetric position index
(BPI)

seafloor topography and exposure metrics
derived from LiDAR bathymetry; slope, slope of
slope, and BPI were calculated at two scales

Benthic habitat composition (7) percent cover of coral, crustose corralline algae,
macroalgae, turf, and soft bottom, proximity
index, Shannon‘s diversity index

percent benthic cover of major cover types,
seascape fragmentation/patch isolation, habitat
diversity

Geographic (3) latitude, longitude, distance to shore geographic location and distance from shore
Wave energy (1) wave power wave height 9 wave period

Notes: The number of individual data sets of each type is indicated in parenthesis. A pairwise correlation analysis was performed on the
full set of predictors for the whole study area (Main Hawaiian Islands [MHI]). Highly correlated predictors (Spearman |q| > 0.7) were
identified and those highly correlated with two or more other predictors were removed. See Appendix S1: Table S2 for more details.
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values under current fishing levels and with fishing pressure
removed. Finally, the relative importance of predictor vari-
ables for each model was evaluated and partial dependence
plots were generated for each predictor variable to interpret
their individual effects on the response variables (De‘ath
2007, Elith et al. 2008).

Recovery potential in the absence of fishing

Final BRT models were used to generate gridded predic-
tions of targeted fish biomass and body length across the
MHI study area (60 9 60 m resolution) under current fish-
ing levels and with fishing pressure removed. Values from
these layers were used to create distribution curves of pre-
dicted biomass and body length under each fishing scenario
for each island. Differences were assessed visually and tested
using a two-sample Kolmogorov-Smirnov test. Overall
change in spatial patterns of high predicted targeted fish
biomass and body length were assessed using maps of pre-
dicted values. Finally, means and percent change between
predicted values across all modeled habitats for present con-
ditions and with fishing effort set to zero were calculated by
island to estimate recovery potential at the island scale.

Spatial prioritization for management

To identify places that could be prioritized for manage-
ment actions that would support fisheries restoration, we
evaluated spatial differences between predictions of targeted
fish biomass and body length under current fishing levels
and predictions with fishing effort set to zero. We assumed
that areas with the greatest differences have the highest
potential for fisheries replenishment if fishing pressure were
limited or removed through management actions. To iden-
tify areas where predictions differed significantly between
models, we applied the methodology of Januchowski et al.
(2010) using the SigDiff function in the R package
SDMTools (VanDerWal et al. 2014). We computed the sig-
nificance of the pairwise differences (for each grid cell) for
the response variables (biomass and length) relative to the
mean and variance of all differences for each island. The
resulting probability values represent the area under the
curve of a Gaussian distribution defined by the mean and
variance across all cells for that island. The spatial grids rep-
resenting the individual significance values were reclassified
to indicate cells where predictions with fishing pressure
removed were significantly higher than present predictions
(P < 0.10). Mean absolute difference and mean percent
change relative to modeled values under current fishing pres-
sure were calculated for cells showing significant increase by
island. Finally, the spatial grids representing regions of signif-
icant increase for biomass and body length were combined
into a single map for interpretation.

RESULTS

Fishing and habitat patterns

Modeled shore-spearing effort values under-estimated
total shore effort from creel surveys by a factor of two. How-
ever, there was a strong positive relationship (r2 = 0.7)

across all sites, indicating that this measure of shore spear-
ing effort provides a reliable proxy for overall shore fishing
effort (Fig. 2). The highest intensity of shore fishing effort
was estimated to be near the highly populated areas of
Hawai‘i Island near Hilo and Kona, followed by the south
and southeast shores of O‘ahu and near the populated areas
around Kahului and Kihei on Maui (Fig. 3a). Boat fishing
effort for reef fish was generally much lower than shore fish-
ing effort (Fig. 3b). The highest values for boat fishing effort
were found offshore of south O‘ahu. Moderate boat fishing
effort was found along the southwest shore of Kaua‘i, south
Moloka‘i, northwest Maui, and near Kona and Hilo on
Hawai‘i Island (Fig. 3b).
While a more complete description of marine habitat pat-

terns in the MHI is outside the scope of this study, here we
focus on several key variables shown to be important deter-
minants of targeted fish biomass and body length. Seafloor
topographic complexity (slope of slope) was highly variable
within islands. Generally, areas with low values (indicating
flat bottom) encompassed the greatest area, while high
values (indicating complex structure) were few and widely
dispersed. Islands with more shallow water habitat such as
O‘ahu tended to have more flat bottom. Sine aspect repre-
sents the east-west exposure of benthic habitats. The highest
values were located on east-facing shores and the lowest
values on west-facing shores. Eastern exposures are most
exposed to the predominate trade winds and associated
short-period swells. Wave power was highest on the north
shores of all islands, with the exception of Hawai‘i Island,
and generally decreased among islands from north to south.
Depth increased with distance from shore on all islands, and
the largest shallow water areas were found on O‘ahu and the
south shore of Moloka‘i.

Seascape models

The final BRT model for targeted fish biomass had nine
predictors. Cross-validation PDE was 37.5%, and test PDE
was 35.3%. The final BRT model for targeted fish body
length had nine predictors, a cross-validation PDE of 21.2%,

FIG. 2. Comparison of modeled shore fishing effort with empir-
ical fishing survey values from 12 sites across the MHI (Hawai‘i, 4;
Maui, 2; O‘ahu, 5; Kaua‘i, 1). Total fishing effort values were
obtained from Delaney et al. (2017) and compared to derived spear
fishing effort maps based on the sum of grid cell values within poly-
gons representing each survey area. The equation of the fitted line is
y = 0.48x � 1660.
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and a test PDE of 21.4%. Based on these metrics, the biomass
model fit better than the length model, and had higher
predictive accuracy. Plots of prediction means vs. CVs
showed that higher predicted values generally had higher pre-
cision (CV < 0.5; Appendix S1: Fig. S2). When predictions
for biomass and length under present fishing levels were com-
pared to fish survey data at the island level, BRT predictions
tended to underestimate means of field measured values
within one standard deviation (Appendix S1: Fig. S3). This
effect increased with the magnitude of the measured values.
However, the BRT predicted values well represented the rela-
tive differences between islands (Appendix S1: Fig. S3).
Biomass was largely driven by shore fishing, while length

responded primarily to boat fishing (Fig. 4). In terms of

habitat, biomass was primarily driven by topographic com-
plexity (slope of slope) and length was most associated with
exposure (sine aspect). Depth and wave power were other
key habitat variables that influenced both targeted fish bio-
mass and body length (Fig. 4). These habitat variables all
had positive relationships with the assemblage indicators,
whereas the fishing variables had negative relationships
(Fig. 4).

Effects of fishing and habitat on fish biomass and body length

Targeted fish biomass and body length had similar negative
relationships with fishing predictors. Both declined rapidly
from 0 to 2 h/ha/yr of shore (spear) fishing effort and

FIG. 3. Shore fishing effort around the MHI as represented by (a) shore-based spear effort (h/ha). Boat fishing effort around the MHI
as represented by (b) boat-based spear effort (h/ha). Maui Nui encompasses the islands of Maui, Moloka‘i, and L�ana‘i.
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0–0.2 h/ha/yr of boat (spear) fishing effort, then were rela-
tively flat across a wide range of increasing effort values
(Fig. 5; Appendix S1: Fig. S4, Fig. S5). Areas of shore fish-
ing effort <2 h/ha/yr include the less populated islands, Ni‘i-
hau, Moloka‘i, and L�ana‘i, as well as remote and difficult to
access areas of the more populated islands such as west
Kaua‘i, east Maui, and south Hawai‘i Island (Fig. 3a).
Areas of low boat fishing effort (<0.2 h/ha/yr) included
Ni‘ihau, northwest Kaua‘i, north O‘ahu, north Moloka‘i,
west L�ana‘i, and north and south Hawai‘i (Fig. 3b).
Slope of slope, a measure of topographic complexity, was

the most important habitat predictor for targeted reef fish bio-
mass, which increased rapidly at the low end of the scale (0–
8°; Appendix S1: Fig. S4). Seafloor depth had a strong posi-
tive relationship with targeted fish biomass, which increased
with depth before leveling off at around 17 m. Maximum
slope in a 240 m radius was also positively related to biomass
with a steep increase from 0 to 10°. Sine aspect (exposure) was
positively related to biomass, which increased linearly from
�1 (west facing) to 1 (east facing), and wave power, respond-
ing more at higher levels (>10,000 kW/m, Appendix S1:
Fig. S4). Predictor relationships for fish body length were

similar to those for biomass (Appendix S1: Fig. S5). However,
there was a stronger relationship with wave power and a
weaker relationship with slope of slope. In addition, the rela-
tionship of average body length and sine aspect was not linear
and length increased with depth up to 25 m before leveling
off. Targeted fish body length was also positively related to
maximum slope of slope within a 240 m radius, peaking
between 25° and 40°; and slope, increasing from 0° to 5°
(Appendix S1: Fig. S5). Thus, in the absence of fishing pres-
sure, targeted fish biomass and body length were generally
predicted to reach their highest values in habitats with slope
of slope >8°, eastern exposures (sine aspect > 0), wave power
>10,000 kW/m, and at depths >17 m.

Recovery potential in the absence of fishing

All islands except for Ni‘ihau (which was assumed to have
negligible fishing pressure) showed a significant increase in
predicted biomass when the influence of fishing was
removed (Fig. 6). Biomass predictions for these islands
under present fishing levels had distributions that were right
skewed, indicating primarily low biomass levels. When fish-
ing effort was set to zero, these distributions flattened out,
shifted right, and became more symmetrical, indicating
overall increases in mean biomass (Fig. 6). Targeted fish
biomass was highest in areas less accessible to humans such
as the north shores of most islands and the east shore of
Maui. However, when fishing pressure was removed biomass
increased across all suitable habitats with the highest
increases in deeper areas with high topographic complexity
(Appendix S1: Figs. S6 and S7). O‘ahu (the most populated
island, with highest overall fishing effort) showed the largest
predicted increase in biomass, followed by Kaua‘i, Molo-
ka‘i, Maui, Hawai‘i, and then Ni‘ihau (Table 2).
All islands except for Ni‘ihau showed a significant

increase in predicted fish body length when the influence of
fishing was removed (Fig. 7). Under current fishing levels,
the shapes of predicted fish length distributions varied by
island. When fishing effort was set to zero, predicted length
distributions maintained their general shape and shifted to
the right indicating an increase in average body length
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FIG. 4. Final predictors for MHI models based on boosted regression tree (BRT) model results for (a) biomass and (b) body length. Rel-
ative percent variation explained is shown on the x-axis and the color represents the directionality of the relationship (red, negative; green,
positive; orange, non-directional). Values are mean � standard deviation.

FIG. 5. Partial dependence plots of fishing predictors for the
targeted reef fish biomass model. The y-axis is transformed biomass
(fourth-root) and the x-axis is the fishing predictor variable (h/ha/
yr). Plots represent the relationship of biomass with each predictor
individually when all other predictors are held at their mean. Lines
are the mean of bootstrapped models plus and minus the standard
deviation.
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(Fig. 7). Similar to biomass, larger fishes were located in
areas that are less accessible to humans such as north shores
of most islands and the east shore of Maui (Appendix S1:
Figs. S8 and S9). When fishing effort was set to zero, fish
length increased in all areas with the highest increases along
eastern exposures and areas with high wave power. As with
biomass, O‘ahu showed the largest relative increase in fish
body length when fishing pressure was removed; the other
islands showed smaller increases (Table 3).

Spatial prioritization for management

These analyses identified areas with the highest recovery
potential (i.e., areas with high quality habitat and currently
under high fishing pressure), which would be expected to
respond positively to management of fishing effort. Because
current fishing effort was assumed to be zero in existing marine
reserves, these areas were not selected. Areas with highest
recovery potential for targeted reef fish biomass tended to be
patchy, while areas with highest projected recovery for body
length were more continuous. Locations with high recovery

potential for targeted fish biomass and body length were usu-
ally found in the same areas, though often with little direct spa-
tial overlap (Fig. 8). In general, these areas were located on the
east-facing shores of Kaua‘i and O‘ahu, the southeast shore of
Moloka‘i, and the west shore of west Maui (Fig. 8). In
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FIG. 6. Distributions of predicted biomass values under present fishing levels (blue) and with fishing removed (red) for each island. The
x-axis is biomass values per 60 9 60 m grid cell and the y-axis is frequency of biomass values as a proportion of the total number of grid
cells per island (density).

TABLE 2. Predicted mean biomass (g/m2) and percent increase for
targeted reef fishes under present conditions and with fishing
pressure removed.

Island N

Present No fishing

Increase (%)Mean SD Mean SD

Kaua‘i 67,967 11.2 8.7 27.6 9.7 147
Ni‘ihau 10,677 30.0 10.2 30.5 10.4 2
O‘ahu 84,870 4.2 4.1 19.9 7.6 370
Moloka‘i 38,220 10.9 9.2 23.5 9.4 116
Maui 43,830 12.5 10.0 26.1 9.1 110
Hawai‘i 30,702 13.4 8.7 26.6 7.3 98

Notes: N is the sample size representing total number of spatially
predicted grid cells per island. SD is standard deviation. Islands are
ordered from north to south.
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addition, the prioritization analysis identified areas on the
north shore of Kaua‘i, around M�okapu point and the south-
east shore of O‘ahu, M�a‘ili point on west O‘ahu, northwest
Moloka‘i, Ma‘alaea bay on Maui, west Hawai‘i Island just
north of Makole‘a point, and east Hawai‘i Island around Cape
Kumukahi and north of Kaloli point (Fig. 8). The largest

relative change in biomass for regions of significant increase
were on O‘ahu and Kaua‘i, while largest relative increases in
body length for these areas were on O‘ahu, with smaller levels
of increase on Kaua‘i, Moloka‘i, and Maui (Table 4). Ni‘ihau
showed minimal change in biomass and body length.

DISCUSSION

Inferred fishing effort patterns were highly variable
around the MHI and seascape models indicated a low
threshold beyond which targeted fish assemblages were
severely impacted. Sparsely populated islands Ni‘ihau and
Moloka‘i had fishing effort below this threshold, as did
large, and often remote, areas on the other islands. Seascape
models also identified seafloor topographic complexity,
exposure, wave power, and depth as the key variables that
influenced the distribution of high targeted fish biomass and
body length and characterized productive habitats. Fish bio-
mass was most sensitive to shore- and boat-based fishing, as
well as topographic complexity, whereas average body length
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FIG. 7. Distributions of predicted length values under present fishing levels (blue) and with fishing removed (red) for each island. The x-
axis is length values per 60 9 60 m grid cell and y-axis is frequency of length values as a proportion of the total number of grid cells per
island (density).

TABLE 3. Predicted mean body length (cm) and percent increase
for targeted reef fishes under present conditions and with fishing
pressure removed.

Island N

Present No fishing

Increase (%)Mean SD Mean SD

Kaua‘i 67,967 17.9 2.4 21.8 1.6 22
Ni‘ihau 10,677 23.0 1.2 23.0 1.2 0
O‘ahu 84,870 15.1 2.0 20.0 1.6 33
Moloka‘i 38,220 17.7 3.2 21.3 2.0 21
Maui 43,830 18.0 2.9 21.1 1.6 17
Hawai‘i 30,702 18.6 2.1 21.0 1.3 13

Notes: N is the sample size representing total number of spatially
predicted grid cells per island. SE is standard error of the mean.
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FIG. 8. Regions of significant increase (a = 0.1) in MHI model predictions of biomass and length after removal of fishing. Existing no-
take reserves and restricted access areas are outlined in black.
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responded primarily to boat fishing and was strongly influ-
enced by exposure. While the highest targeted reef fish bio-
mass and body lengths were mostly restricted to areas not
easily accessed by humans; when fishing effort was set to
zero, high values of biomass and body length were widely
distributed among suitable habitats. By comparing modelled
current targeted fish distributions with those predicted when
fishing pressure was removed, areas with high recovery
potential were revealed, with significant increases in average
biomass and length across the MHI (Table 4).

Fishing effort

An integral component of this research was the application
of spatially continuous fishing effort layers developed for the
MHI. We chose to use fishing effort rather than catch
because derived catch estimates incorporate catch per unit
effort (CPUE), which varies in relation to a number of factors
including fish abundance (Maunder et al. 2006). Because fish
biomass is also related to fish abundance, fish catch, unlike
fishing effort, would not be independent of our response
variable. Our derived fishing effort layers represent the most
spatially comprehensive, high resolution, and broad-scale
products yet created to quantify spatial patterns of coral reef
fishery effort. However, a number of simplifying assumptions
were made in order to develop these layers, primarily that
fishers are more likely to frequent accessible areas, more
likely to fish close to home, and that numbers of fishers are
proportional to total population (Stewart et al. 2010). For
these reasons, our fishing effort maps may possibly capture
additional impacts related to accessibility and proximity to
humans, such as land based source pollution. Though our
fishing layers were strong predictors of fishery indicators and
have been corroborated with fine scale effort data from creel
surveys, there is considerable scope to improve them further.
Future studies should focus on testing large-scale drivers of
fishing effort based on local-scale empirical data.
Our results show the greatest impacts on targeted reef

fishes within the first 10% of modeled ranges for shore and
boat fishing effort. This is supported by previous research
indicating that the greatest impacts from fishing occur at
low fishing levels (Jennings and Polunin 1996, Jennings and
Kaiser 1998). There are few examples in the literature show-
ing this relationship for coral reef fisheries; it has important
implications for management as it highlights the importance
of no-take MPAs and suggests that fishing effort in rota-
tional closures should be carefully managed.

Fish response variables

Biomass and size of targeted fish species have often been
used to evaluate the effects of fishing pressure (Dulvy et al.
2004, Nicholson and Jennings 2004). The theoretical basis is
that larger fishes are generally more targeted; the accumu-
lated effects of fishing mortality reduce the number of older,
and therefore larger, fishes in a population; and that large-
bodied species are more vulnerable to fishing due to slow
population turnover (Jennings et al. 1998, 1999). Both bio-
mass and fish length are thought to represent the relative
abundance of large and small individuals (Shin et al. 2005).
However, our results suggest they are not interchangeable
and instead capture different aspects of the fished assem-
blage. Biomass was more sensitive to fishing compared to
mean length. While higher average length always reflects
greater relative abundance of large individuals, high biomass
can also result from high abundance of small individuals.
This was supported by the fact that slope of slope (60 m)
was the top habitat predictor for biomass, while maximum
slope of slope in a 240 m radius explained more variability
in average length. Larger individuals and species generally
have a larger geographical range of movements and thus
respond to broader-scale measures of seascape structure
(Pittman et al. 2007, Wedding et al. 2008, Kendall et al.
2011). It is important to consider both fished assemblage
biomass and size distribution because large individuals
represent high-value species and high reproductive capacity
(Birkeland and Dayton 2005).
Our response variables were derived from pooling all tar-

geted coral reef fish species (49) for which we had adequate
data. These species represent a range of trophic guilds, life
history traits, and vulnerability to fishing (Appendix S1:
Table S1). The majority were herbivores (23), followed by
mobile invertivores (15), piscivores (9), and detritivores (2).
Maximum species sizes ranged from 19 cm to >2 m and
known life spans from 4 to 50 yr. This level of variability is
common in coral reef fisheries and managers are in need of
simple, yet meaningful metrics to guide management actions
(Nash and Graham 2016). While species differences in terms
of life span and age at maturity will influence timelines of
recovery, habitat characteristics that support targeted fish
assemblages can be identified and used to select priority
areas for management (Pittman and Knudby 2014). In
addition to their practicality, a significant advantage of
using assemblage-level metrics for spatial modeling is the
low prevalence of null values, which improves model

TABLE 4. Biomass (g/m2) and fish length (cm) mean, standard deviation (SD), mean percent increase, and standard deviation of percent
increase between MHI model predictions for regions of significant increase shown in Fig. 8.

Island

Biomass increase Length increase

Mean SD Mean % SD % Mean SD Mean % SD %

Kaua‘i 29.4 2.6 383 184 6.5 0.6 45 7
Ni‘ihau 3.6 0.9 11 2 0.0 0.0 0 0
O‘ahu 25.9 2.8 517 268 7.3 0.5 59 10
Moloka‘i 21.6 2.2 349 200 5.8 0.2 43 4
Maui 23.4 2.2 256 125 6.2 0.6 46 9
Hawai‘i 21.9 2.1 203 114 4.5 0.4 29 4
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performance (Wisz et al. 2008). Furthermore, using a large
number of species provides more stable spatial solutions
when conducting multi-species prioritization (Kujala et al.
2017).

Habitat and waves

Of the 25 habitat predictors retained for model develop-
ment, slope of slope, sine aspect, wave power, and depth
were selected as final predictors and showed positive rela-
tionships for both targeted fish biomass and body length.
Topographically complex habitats offer more potential
niches and provide refuges from predation (Hixon and Beets
1989, Almany 2004). Slope of slope is a measure of topo-
graphic complexity, which, along with related LiDAR
derived metrics, has been shown to be highly correlated with
in-situ rugosity (Wedding et al. 2008, Stamoulis and Fried-
lander 2013) and a strong positive spatial predictor for the
distribution of fish biomass (Wedding and Friedlander 2008,
Pittman et al. 2009). Depth has also been shown to be a key
predictor of fish distributions with higher fish biomass gen-
erally associated with greater depths (Friedlander and Par-
rish 1998a, Pittman and Brown 2011), suggesting that
deeper waters may represent a refuge from fishing (Lindfield
et al. 2014).
Both targeted fish biomass and body length showed strong

positive relationships with sine aspect. Sine aspect measures
east-west exposure with the highest values facing east towards
the prevailing tradewinds. Windward reefs may be more pro-
ductive due to nutrient inputs from increased terrestrial run-
off (Ringuet and Mackenzie 2005, Giambelluca et al. 2012),
and predominantly rough seas along eastern shores likely
limit boat and shore fishing activity. In contrast, wave power
is highest along north- and northwest-facing shores due to
winter storms in the north Pacific (Fletcher et al. 2008). The
positive relationships between wave energy and targeted fish
biomass and body length have several possible explanations.
High waves may provide a refuge from fishing pressure
(Branch and Odendaal 2003, McLean et al. 2016) and flush
reefs and mitigate land based source pollution, thus improv-
ing habitat quality (Fabricius 2005, 2011). Highly wave
exposed areas also have less small-scale structure such as
from branching corals and support fewer small species, while
large fishes are stronger swimmers and thus able to subsist in
areas with high wave energy (Friedlander and Parrish 1998b,
Friedlander et al. 2003). Further research is needed to con-
firm these patterns and identify causal mechanisms.
Productive habitats for targeted fishes were characterized

by eastern exposures and a combination of high topographic
complexity, wave power, and depth. Topographic complexity
provides ecological benefits, though it may also provide
some refuge from fishing. High wave power, wind exposure,
and depth likely provide refuges from fishing pressure due
to reduced accessibility, which may in part explain why tar-
geted fish biomass and body length showed strong positive
relationships with these factors.

Recovery patterns in the absence of fishing

Our comparison of predicted targeted fish distributions
under current fishing levels and with fishing pressure

removed clearly shows the strong limiting influence of fish-
ing. Because our fishing effort layers were partly based on
accessibility to humans and human population, some of the
variability they account for in models of targeted fish assem-
blage indicators may be due to human impacts other than
fishing. While current productive and healthy targeted fish
assemblages were largely restricted to areas less accessible to
fishers, when fishing pressure was removed, they expanded
throughout all suitable habitats. This is supported by previ-
ous research that showed that structurally complex habitats
harbored greater fish biomass (Graham and Nash 2013,
Darling et al. 2017). When converted to percent depletion,
our island-scale estimates of biomass recovery potential are
generally lower than estimates of depletion reported by Wil-
liams et al. (2015), though relative differences among islands
were fairly consistent. This is unsurprising given that models
used in Williams et al. (2015) estimated total fish biomass
and were calibrated on a suite of Pacific Islands ranging
from pristine to highly degraded. Our models were cali-
brated only on the main Hawaiian Islands, which are far
from pristine. Also Ni‘ihau was assumed to have negligible
fishing impact, which is not strictly accurate as subsistence
fishing occurs on the island (population 170), and there are
reports of fishing from boats based on Kaua‘i. Furthermore,
due to gaps in the bathymetry data, the shallow nearshore
areas around Ni‘ihau were not included in our analysis.
Areas with significant projected biomass and length

recovery had little direct spatial overlap. This is because they
represent different aspects of the fished assemblage and are
primarily influenced by different seascape predictors, espe-
cially in terms of fishing effort. Shore fishing explained the
most variability in targeted fish biomass, while boat fishing
was most important for fish body length. As a result, when
fishing pressure was removed, predicted biomass increase
was highest in accessible, nearshore areas with currently
high shore-fishing effort, and body length showed greatest
projected increases in well populated areas close to boating
facilities with currently high boat fishing effort. After fishing
effort, high biomass was primarily driven by high topo-
graphic complexity (slope of slope), which is patchily dis-
tributed. This resulted in fragmented patterns for areas of
high biomass recovery potential. In contrast, top habitat
predictors for body length were high exposure (sine aspect)
and wave power, which have more continuous patterns,
resulting in similarly unbroken spatial patterns for areas
with high length recovery potential.

Management applications

In September 2016, the governor of Hawai‘i made a com-
mitment at the International Union for Conservation of Nat-
ure (IUCN) World Conservation Conference to effectively
manage 30% of Hawai‘i’s nearshore waters by 2030 (Ige
2016). “Effective management” will be achieved through a
broad suite of approaches including area closures for fisheries
replenishment, as well as identifying areas that are already
healthy (Hawaii Division of Aquatic Resources 2016). There-
fore, identifying presently productive areas and those with
high recovery potential is a priority, and an effective
approach to accomplish this at the scale of the MHI is timely
and could serve as a template for similar efforts elsewhere.

12 KOSTANTINOS A. STAMOULIS ET AL.
Ecological Applications

Vol. 0, No. 0



The prioritization approach presented in this study incor-
porates current fishing levels into estimates of recovery
potential, thus identifying areas where management actions
will be most effective in restoring coral reef fisheries. This
was a result of comparing spatial predictions of fishery indi-
cators under current fishing levels with predictions after
fishing is removed. Each of these predicted maps also has
utility for management. Spatial patterns of targeted fish bio-
mass and body length under current fishing levels allows for
identification of areas that presently harbor healthy fish
assemblages. Effectively managing fishing in these areas
would ensure that they continue to supplement adjacent
fisheries, through larval export and spillover of adults and
juveniles (Harrison et al. 2012, Stamoulis and Friedlander
2013). Because these areas generally have low fishing pres-
sure, management actions would incur minimal cost in terms
of fisher displacement. Predicted maps of targeted fish dis-
tributions with fishing removed identify habitats capable of
supporting high biomass and larger fishes. This information
can be used to characterize these essential habitats for coral
reef fisheries. Comparing predictions with and without fish-
ing pressure reveals areas to focus fisheries management and
provides estimates of recovery potential. Targeted fish bio-
mass recovery in these areas represented a 517% increase on
average relative to current values for O‘ahu with smaller
increases for the other islands where fishing pressure is not
as high. These areas show potential mean targeted fish size
increases of up 59% on O‘ahu with smaller increases for the
other islands. Long-term monitoring data shows over a ten-
fold increase in total fish biomass during the first 16 yr of
protection at Hanauma Bay, the oldest no-take reserve on
O‘ahu (Friedlander and Brown 2004), suggesting that these
estimates are likely conservative.
The intrinsic rate of population growth (r) is the major dri-

ver of population recovery after fishing pressure is removed
(Jennings 2000). However, the rate of population recovery
also depends on the size of the remaining population and
degree of compensation or depensation, as well as other fac-
tors (Jennings 2000). In the absence of this information,
rough estimates of recovery rates inside no-take marine
reserves can be inferred from life history traits such as trophic
level, maximum body size, and longevity (Abesamis et al.
2014). The targeted reef fish species included in this analy-
sis exhibit a broad range of life history characteristics
(Appendix S1: Table S1) and thus timelines of recovery will
vary. The first species likely to recover are the goatfish (Mulli-
dae) and several of the parrotfish (Scaridae; Amax < 7 yr)
based on their short life spans, and full recovery for these spe-
cies may be possible within 10 yr (Abesamis et al. 2014). In
overfished regions such as the MHI, full recovery of moderate
to highly vulnerable targeted reef fish such as jacks (Caran-
gids), wrasses (Labrids), surgeonfish (Acanthurids), and large
parrotfish is likely to take 20–40 yr (Abesamis et al. 2014).
Areas with significant (a = 0.1) projected biomass and

length recovery were selected for prioritization, though the
threshold could be adjusted based on management needs.
Spatial predictions of high biomass and fish body length
generally had high precision (CV < 0.5), providing confi-
dence in the results. This prioritization approach identified
areas where management actions will have the most scope to
restore fisheries and could be used as a starting point for

marine reserve selection. These areas are capable of support-
ing high numbers of large fishes, which constitute high
reproductive capacity (Berkeley et al. 2004, Birkeland and
Dayton 2005). The next most important criteria to consider
is larval connectivity to ensure that adequate portions of
larvae are exported into fished areas (Green et al. 2015).
While larval transport modeling is still in its infancy, recent
work has modeled potential connectivity based on oceano-
graphic circulation in the Hawaiian islands and identified
potential larval sources and sinks at 4 km2 resolution (Wren
et al. 2016). Places that are capable of supporting high
spawner biomass, which are also important larval source
areas for connected reefs, would be good candidates for
enhanced fishery management or protection. Such areas,
identified by these ecological criteria, should be additionally
evaluated based on social, economic, and other considera-
tions important for management (Smith and Wilen 2003,
Charles and Wilson 2009, Jones et al. 2013).

CONCLUSIONS

The development of spatially continuous and comprehen-
sive fishing effort layers, combined with seascape models of
targeted fish assemblage indicators for the entire MHI,
allowed us to make spatially explicit estimates of recovery
potential and thus identify areas that would benefit most
from focused coral reef fisheries management. These areas
are generally located on the east-facing shores of Kaua‘i
and O‘ahu, the southeast shore of Moloka‘i, the west shore
of west Maui, and isolated locations in west and east
Hawai‘i Island. However, the high resolution maps show
considerable spatial heterogeneity in the geographical distri-
bution of recovery potential as defined by habitat and fish-
ing patterns. While targeted fish biomass and body length
were chosen here to characterize key attributes of reef fish-
eries, this approach could also be applied using other fish
response variables that are important to managers. The
information provided is well suited for both local scale man-
agement and regional marine spatial planning efforts that
aim to sustain and enhance coastal fisheries.
This study is the first of its kind to develop regional-scale

seascape models that integrate spatially explicit estimates of
fishing pressure. The high resolution of our model inputs
and predictions (60 9 60 m) is consistent with movement
patterns of most targeted fish species and fishers (Weeks
et al. 2017). Tree-based modeling approaches are well suited
to handling non-linear relationships and high-order interac-
tions of complex ecological data (De‘ath and Fabricius
2000). The ability to make spatial predictions, or predictive
mapping, expands upon field-based measurements that are
expensive and spatially limited, and produces spatial infor-
mation at the scope and scale necessary for large-scale assess-
ments and marine spatial planning (Stamoulis and Delevaux
2015). Spatially comprehensive, continuous input and output
data sets eliminate the need for the simplifying assumptions
common in traditional approaches that can increase uncer-
tainty when results are extrapolated across the area of inter-
est. Predictive mapping fills gaps in survey coverage, allows
for testing of management scenarios, and provides spatially
comprehensive information for managers including estimates
of prediction precision (Pittman and Knudby 2014). Finally,
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the approach is flexible so that it can be applied anywhere
where demersal fish populations are targeted, and any response
variable derived from fish survey data can be modeled depend-
ing on the research or management question.
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